Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 12(11)2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31142007

RESUMO

(1) Background. Titanium is characterized by its biocompatibility and resistance to stress and fatigue. Treatment with argon plasma may favour growth of human osteoblasts with respect to cell adhesion and proliferation. The aim of this study was to analyse the behaviour of human osteoblasts (MG-63) on Grade IV and V titanium possessing a sand-blasted, acid-etched (SLA) surface. SLA is a widely used surface treatment to create micro- and macroretentions to enhance osteoconductive properties on the surface. (2) Methods. One group of each grade of titanium was decontaminated with argon plasma and compared. On each disc, 20 × 104 cells were cultivated for morphological analysis, study of cell viability (regarding a negative control [100% viability]) and mitochondrial energy balance. (3) Results. At 24 h titanium treated with SLA showed a higher percentage of cell viability (47.3 ± 8.1%) compared to titanium IV treated with argon plasma, which presented a percentage of 79.1 ± 1.1%. Grade V titanium treated with argon plasma presented a higher viability percentage 91.3 ± 3.0% whereas nontreated Grade V titanium presented 53.3 ± 4.0%. Cells cultivated on the surfaces with an argon-plasma treatment were enlarged in comparison to non-treated discs. The cells with smaller circularity with a greater spread and spindle shape were the ones cultivated on the Grade V titanium surface. Cells seeded on treated titanium IV and titanium V, treated or not, showed higher mitochondrial activity over nontreated titanium IV. (4) Conclusions. Cells cultivated on those Grade V titanium discs that were decontaminated with argon plasma presented higher levels of cell adhesion and proliferation, lower mitochondrial damage and a higher mean cell area compared to those not decontaminated with argon plasma.

2.
Polymers (Basel) ; 11(4)2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31027245

RESUMO

Polymethyl methacrylate (PMMA) and lithium disilicate are widely used materials in the dental field. PMMA is mainly used for the manufacture of removable prostheses; however, with the incorporation of CAD-CAM technology, new applications have been introduced for this material, including as a provisional implant attachment. Lithium disilicate is considered the gold standard for definitive attachment material. On the other hand, PMMA has begun to be used in clinics as a provisional attachment until the placement of a definitive one occurs. Although there are clinical studies regarding its use, there are few studies on cell reorganization around this type of material. This is why we carried out an in vitro comparative study using discs of both materials in which human gingival fibroblasts (HGFs) were cultured. After processing them, we analyzed various cellular parameters (cell count, cytoskeleton length, core size and coverage area). We analyzed the surface of the discs together with their composition. The results obtained were mostly not statistically significant, which shows that the qualities of PMMA make it a suitable material as an implant attachment.

3.
J Funct Biomater ; 9(4)2018 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-30544972

RESUMO

(1) Background. Titanium is characterized by its biocompatibility, resistance to maximum stress, and fatigue and non-toxicity. The composition, surface structure, and roughness of titanium have a key and direct influence on the osseointegration processes when it is used in the form of dental implants. The objective of the present study is to characterize, at chemical, superficial, and biological levels, the result of the application of the sandblasted with large-grit and acid-etched (SLA) treatment consisting of coarse-grained and double-passivated acid blasting with subsequent decontamination with argon plasma on the surface of titanium implants type IV. (2) Methods. Four Oxtein® dental implants (Zaragoza, Spain) were investigated with the following coding: Code L63713T (titanium grade IV, 3.75 mm in diameter, and 13 mm in length). The surface of the implants was SLA type obtained from coarse-grained, double passivated acid, and decontaminated with argon plasma. The samples were in their sealed packages and were opened in our laboratory. The X-ray photoelectron spectroscopy (XPS) technique was used to characterize the chemical composition of the surface, and the scanning electronic microscope (SEM) technique was used to perform topographic surface evaluation. Cell cultures were also performed on both surfaces. (3) Results. The superficial chemical analysis of the studied samples presented the following components, approximately, expressed in atomic percentage: O: 39%; Ti: 18%; C: 39%; N: 2%; and Si: 1%. In the same way, the topographic analysis values were obtained in the evaluated roughness parameters: Ra: 1.5 µm ± 0.02%; Rq: 1.31 µm ± 0.33; Rz: 8.98 µm ± 0.73; Rp: 5.12 µm ± 0.48; Rv: 3.76 µm ± 0.51; and Rc: 4.92 µm ± 0.24. At a biological level, the expression of osteocalcin was higher (p < 0.05) on the micro-rough surface compared to that machined at 48 and 96 h of culture. (4) Conclusions. The data obtained in our study indicate that the total carbon content, the relative concentration of titanium, and the roughness of the treatment performed on the implants are in agreement with those found in the literature. Further, the roughness of the treatment performed on the implants throws a spongy, three-dimensional surface suitable for bone growth on it. The biological results found are compatible with the clinical use of the surface tested.

4.
Int J Mol Sci ; 19(9)2018 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-30208663

RESUMO

New zirconia-reinforced lithium silicate ceramics (ZLS) could be a viable alternative to zirconium (Y-TZP) in the manufacture of implantological abutments-especially in aesthetic cases-due to its good mechanical, optical, and biocompatibility properties. Although there are several studies on the ZLS mechanical properties, there are no studies regarding proliferation, spreading, or cytomorphometry. We designed the present study which compares the surface, cellular proliferation, and cellular morphology between Y-TZP (Vita YZ® T [Vita Zahnfabrik (Postfach, Germany)]) and ZLS (Celtra® Duo [Degudent (Hanau-Wolfgang, Germany)]). The surface characterization was performed with energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), and optical profilometry. Human gingival fibroblasts (HGFs) were subsequently cultured on both materials and early cellular response and cell morphology were compared through nuclear and cytoskeletal measurement parameters using confocal microscopy. The results showed greater proliferation and spreading on the surface of Y-TZP. This could indicate that Y-TZP continues to be a gold standard in terms of transgingival implant material: Nevertheless, more in vitro and in vivo research is necessary to confirm the results obtained in this study.


Assuntos
Materiais Biocompatíveis/química , Fibroblastos/citologia , Gengiva/citologia , Lítio/química , Silicatos/química , Zircônio/química , Linhagem Celular , Movimento Celular , Proliferação de Células , Cerâmica/química , Humanos , Teste de Materiais , Próteses e Implantes , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...